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Abstract

A new approach to real-time collision avoidance for dexterous 7-DOF arms and
supportive simulation and expem”mentai  results are presented. The collision avoidance
problem is formulated and solved as a force control problem. Virtual forces opposing
intrusion of the arm into the obstacle safety zone are computed in real time. These
forces are then nullified bg employing an outer feedback loop which perturbs the arm
Cartesian commands for the inner position control system. Graphical simulation re-
sults are presented to demonstrate the application of the collision avoidance approach
to the dexterous 7-DOF arms of the NASA-Ranger Telerobotic  Flight Experiment. The
approach is also implemented and tested on a 7-DOF RRC arm and a set of experi-
ments are conducted in the laboratory. These experiments demonstrate perturbations of
the end-eflector position and orientation, as well as the arm posture, in order to avoid
impending collisions. The proposed approach is simple, computationally  fast, requires
minimal modification to the arm control system, and applies to whole-arm collision
avoidance.

1 Introduction
The need for human-equivalent manipulative capabilities has motivated the development of
dezterous robotic arms over the past decade. These robotic arms are cinematically similar to
the human arm and have 7 joints (instead of the conventional 6 joints), which makes them
cinematically redundant. This redundancy is the basis for the arm dexterity, and implies
that there are infinite distinct arm postures which yield the same end-effecter position and
orientation. Since 1985, the Robotics Research Corporation (RRC) has been manufacturing a
family of commercially available 7-DOF  arms. Similarly, robots planned for space operations,
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including the NASA-Ranger Telerobot and the Space Station Dexterous Robotic System, have
7-DOF arms.

While motion control of dexterous 7-DOF  arms in an obstacle-free workspace has been
the subject of considerable research in recent years, the more realistic problem of collision-free
motion in an obstacle field has not been investigated extensively. Maciejewski and Klein[l]
describe a method for collision avoidance using the Jacobian pseudoinverse approach for
redundant arm control. Khatib[2] suggests a method for real-time collision avoidance in
operational space using the gradients of artificial potential fields. Wikman and Newman[3]
describe a reflex control approach for on-line collision avoidance. Boddy and Taylor[4] develop
a whole-arm reactive collision avoidance scheme using the configuration control methodology.
Glass et al[5] describe a real-time configuration controller for a 7-DOF  arm utilizing collision
avoidance as the additional task. Finally, Seraji, Steele, and Ivlev[6] develop a method for
sensor-based collision avoidance for a position-controlled dexterous arm based on perturba-
tions of the end-effecter position coordinates.

In this paper, we present a new methodology and a set of supportive simulation and
experimental results on collision avoidance of dexterous 7-DOF  arms. This methodology
applies to whole-arm collision avoidance by perturbing both the end-effecter position and
orientation as well as the arm posture. The underlying concept is to represent intrusion of
the arm into the obstacle safety zone by a virtual force,  and nullifying this force by perturbing
the nominal arm motion trajectory. This approach is simple and computationally  efficient,
suitable for real-time implementation, and requires minimal modification to the arm control
system.

The paper is organized as follows. Section 2 describes the collision avoidance strategy. The
model-based collision detection method is presented in Section 3. Section 4 describes a set
of graphical simulations of the Ranger dexterous arms demonstrating the collision avoidance
capability. Six experimental case studies highlighting different types of collision avoidance
using RRC arms are discussed in Section 5 and experimental results are presented. Section
6 presents conclusions drawn from this work.

2 Collision Avoidance Strategy
Robotic arms are basically positioning devices which can carry a payload from an initial
position and orientation to a target destination along a prescribed Cartesian trajectory. This
arm motion is accomplished by mapping the desired Cartesian path into joint angle trajec-
tories which are then tracked using joint servo control loops. For a cinematically redundant
7-DOF arm, such as the RRC arm, we assume that the end-effecter position and orientation
and the arm anglel (which defines the arm posture) are under the control of a configuration
control scheme, as described in [7,8]. In this approach, we use the configuration-controlled

‘The arm angle is defined to be the angle between the arm plane passing through the upper-arm and
forearm and a reference plane passing through the shoulder-wrist axis.
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arm as the baseline system and make the necessary enhancements to this system to provide
the collision avoidance capability.

2.1 Arm Segmentation

For the development of the collision avoidance strategy, it is convenient  to segment the 7-
DOF arm into three links or arm segments as shown in Figure la for the RRC arm and in
Figure lb for the Ranger arms. These segments are the tool-link 7W, the ~orearm link WE,
and the upper-arm link ES, where 2’, t%’, E, and S refer to the tool-tip, wrist, elbow, and
shoulder, respectively. Three classes of obstacles are now defined as illustrated in Figures
la-lb: tool-tip obstacle, wrist obstac~e,  and elbow obstacle. A tool-tip obstacle is one whose
nearest point on the arm is on the tool-link closer to the tool-tip than a user-specified distance
D. A wrist obstacle is one whose nearest point on the arm is on the tool-link further away
from the tool-tip than D. An elbow obstacle is the one whose nearest point on the arm is
located either on the upper-arm or on the forearm. Notice that an extended obstacle can be
described as a combination of a tool-tip obstacle, a wrist obstacle, and an elbow obstacle.
In our control strategy, collision with a tool-tip obstacle is avoided by perturbing the three
end-effecter position coordinates. Collision avoidance with a wrist obstacle is achieved with
perturbations of the three end-effecter orientation coordinates. Finally, an elbow obstacle
is avoided by perturbing the arm angle, i.e. rotating the elbow E about the shoulder-wrist
axis SW without disturbing the tool frame (i.e., arm self-motion). Notice that the obstacle
detection software provides data on the single nearest obstacle in each of the three zones;
thus limiting perturbation computations to no more than three obstacles during any itera-
tion, This separation of influence of the obstacles is adopted to avoid unnecessary trajectory
perturbations to both the end-effecter position and orientation, as well as to the arm angle.

2.2 Virtual Spring and Damper Forces

For every reachable object in the workspace, the user defines a safety  zone, which is displaced
from the object surface by a user-specified stand-o~  distance d,. Inside the safety zone, there
are fictitious springs with natural length d, and user-defined stiffness ki, and dampers with
user-specified damping coefficient kp occupying the space between the object surface and the
safety zone boundary; a typical example is shown in Figure 2. The proximity of the arm to
each object, dm, is computed continuously by the obstacle detection software described in
Section 3 or measured by arm-mounted proximity sensors[6]. When any point on the arm
enters the safety zone of an object as determined by the detection system (dm < dr), a virhud
intrusion force is generated in the control software and is exerted on the arm at the intrusion
point, see Figure 2. The magnitude of this force is related directly to the extent and rate of
the intrusion into the safety zone, and the direction is opposing the intrusion. The intrusion
force is computed from
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F = kie+ kP~ (1)

where e = d, – dm denotes the extent of intrusion in the Cartesian x direction (for instance),
i.e. the compression of the spring-plus-damper. In equation (1), the term kie represents the
compressive force due to the spring, while the term kP$ is the resistive force due to the
damper. Note that the virtual intrusion force is always along the line of shortest length PQ
connecting the closest points on the obstacle P and on the arm Q, where dm = IPQI.

2.3 End-Effecter Position Perturbations

When the end-effecter is approaching an obstacle, the virtual intrusion force is applied at or
near the tool-tip. End-effecter collision avoidance is accomplished by automatically modifying
the operator-commanded end-effecter position trajectory so as to nullify the intrusion force.

The three-dimensional end-effecter virtual intrusion force vector is first decomposed into
three components along the x, y, and z axes of a fixed world frame-of-reference attached
to the arm base. We shall now describe the collision avoidance system along the x-axis in
detail; avoidance along y and z axes are accomplished in a similar manner. Figure 3 shows the
block diagram of the end-effecter collision avoidance system along the x-axis. The goal of the
collision avoidance system is to perturb the nominal operator-commanded motion trajectory
Xr in order to nullify the intrusion force F. This force is driven to zero by “pushing” the
arm out of the safety zone. This goal is accomplished by employing an external force control
loop around the internal position control system as shown in Figure 3. The virtual force. F
representing the intrusion along the x-axis is compared with the force setpoint Fr = O. When
e >0 indicating intrusion, the virtual force F is driven to zero by an integral controller with
gain k which produces the appropriate trajectory perturbation Xf that modifies the nominal
trajectory Xr. This perturbation is given by

Xj
/

= k [F – Fr]dt

=  k~~ie+k,~ldt

J= kkPe + kkl edt

The spring and damper produced perturbation components are,

/
Xj. = kki edt ; xfd  = kkPe

(2)

respectively

Equation (2) indicates that the trajectory perturbation xf is generated by a proportional-plus-
integral (PI) controller acting on the intrusion amount e. Observe that when the arm does
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not intrude into any safety zone (e s O), no corrective action is necessary (F = O, xf = O),
and the nominal trajectory Xr is executed without perturbation.

Now, if a constant integral gain k is used, the position perturbation xf can cause instability
problems at the boundary of the safety zone. This is caused by the abrupt zeroing of the
perturbation when the arm exits the safety zone, resulting in discontinuity in both velocity
and position. To avoid this instability, a nonlinear gain k is introduced to “smooth out” this
transition as follows:

{

o ife~O

k
(i.e., arm outside safety zone)=

e/d~if  O<e<d~
(3)

1 ife>dk

where dk is the value of e at which the full value of the perturbation is applied. Multiplying
the integrator output by the nonlinear gain k ensures that the perturbation xf will not
change to zero abruptly, and hence prevents a discontinuity in commanded position that
would otherwise occur when the arm exits the safety zone. The variation of k versus e is
depicted in Figure 4.

2.4 End-Effecter Orientation Perturbations

When the wrist is approaching an obstacle, the virtual intrusion force F is applied at or
near the wrist center. Collision avoidance is accomplished by modifying the end-effecter
orientation trajectory so as to nullify F.

Figure 5 shows one viable approach to perturbing orientation of the tool-link TW, where
T is the tool-tip and W is the wrist center. Let P be the closest point on an obstacle to TW
and Q be the closest point on TW to the obstacle. The objective is to leave the position of
T unperturbed, but to rotate TW ab~ut  T such that the point Q will move away from the
obstacle to zero out the virt~al  force F. Following the derivation in Section 2.3, the desired
displacement of point Q is Q f:

/ 1Oj = k[kPZ+ki Zdt (4)

where k is defined by equation (3) and Z is the intrusion vector into the safety zone.
Let F = @ – ~ be the vector from T to Q, where @ and ~ are the position vectors

of points Q and T, respectively. Then let ? be the unit vector of F and r be the length of
F. If the geometry is known to be planar with # perpendicular to TW (as shown), then the
desired orientation perturbation will be a rotation about T by the angle a, where:

In order to express this perturbation
angular rotation perturbation vector
whose magnitude is the desired angle

c1 = Idfl / ‘r (5)

as a rotation about an axis through T, we define the
fif to be a vector along the desired axis of rotation
of rotation. Then fif is given by the cross-product:
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or

Ej=$ x  &
Substituting equation (4) into equation (7), we obtain:

-#

Ej=$x[kpt?+ki J ]Zdt

(6)

(7)

(8)

The vector ~ ~ represents the necessary rotation of the tool-link about T to accomplish the
collision avoidance; i.e., rotate TW about the vector ~f perpendicular to the (F,@) plane by
the angle lit [ = a. Now, to find the corresponding change in the end-effecter orientation,

.
we map the 3x1 rotation vector R ~ to a change AR in the 3x3 end-effecter rotation matrix
using the equivalent angle-axis representation [9]. The
is found as

Rc = &“AR

where & is the nominal end-effecter rotation matrix.

2.5 Arm Angle Perturbations

perturbed end-effecter orientation R.

Figure 6 illustrates the basic geometry involved, where the points S, E and W refer to
shoulder, elbow and wrist centers, respectively, and 0 is a user-defined vector (often

(9)

the
the

vertical vector through S) which, together with the line SW, defines the reference plane. The
arm angle @ is measured from this reference plane to the arm plane containing S, E and
W. Potential collision with the upper-arm and forearm links are avoided by perturbing the
nominal arm angle, namely, by rotating the elbow E about the SW axis (i.e., arm self-motion)
without affecting the end-effecter position and orientation.

Let the point P represent the nearest point on the surface of an obstacle to the surface
of the upper-arm link SE or the forearm link EW. Let the point Q be the point on SE or
EW that is closest to P. The error i? is the vector whose direction is from P to Q and whose
magnitude is the amount of intrusion of the point P into the safety zone, where this zone is
defined by the arm-link radius dt and the stand-off distance d.. Then:

[E’1 = (d, + d,) -IQ -PI (lo)

and ? is in the direction of (Q - P), i.e. from P to Q.2

2For ease of visualization, the safety zone in Figure 6 is shown surrounding the arm link rather than the
obstacle – thk is an equivalent model to the usual one, where the safety zone surrounds each obstacle.
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The signed magnitude of i?, denoted by em, is the basis for computing the arm angle
perturbation. The sign of em is chosen to perturb Q away from the obstacle. The scalar
virtual force for collision avoidance is given by

Ff =  kiem -I- kP~ (11)

where the signs are positive to indicate a force in the direction opposing the intrusion. The
virtual force is always applied in the direction perpendicular to the SEW plane.

Let r be the distance of the point Q to the line SW, i.e. r = QH where H is the projection
of Q on SW. Then, r will be the radius of revolution of the point Q around SW to perturb
the arm angle. We need to find the signed scalar angular perturbation #j to the nominal
arm angle & which will nullify the safety zone intrusion force. To cause a displacement AQ
in ~he position of the

Since AQ = kkPe~ +

where k is defined
discontinuities as the

point Q, the arm angle must change by the amount

kki f emch!, we obtain

(13)

by equation (3) and serves, as discussed in Section 2.2, to prevent
arm moves out of the safety zone.

2.6 Whole-Arm Collision Avoidance

The results of Sections 2.3-2.5 on end-effecter position and orientation perturbations and
arm angle perturbation are now combined to obtain a whole-arm collision avoidance system.
Figure 7 depicts the block diagram of a 7-DOF arm with a configuration controller in the
inner loop and a collision avoidance controller in the outer loop. In this Figure. K, KP, and
K i are 7x7 diagonal matrices, where the first six elements of each matrix are related to the
end-effecter position and orientation and the seventh element is related to the arm angle.
This control system ensures that the end-effecter coordinates and the arm posture respond
in real time to avoid impending collisions.

2.7 Stability Analysis of Collision Avoidance System

Consider the collision avoidance system shown in Figure 8 with the nonlinear gain k defined
by equation (3). Because of the nonlinear nature of k, the stability analysis of the collision
avoidance system is non-trivial. This subject is studied in this section.

For a robotic arm with a position controller, the motion of the arm in each Cartesian
direction (such as x) can be adequately modeled by a second-order transfer-function as [see,
e.g., 10]
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x(s)
G ( s )  =  —

d b

x, (s) =  S2 + 2(WS -1- LJ ‘s’+as+b
(14)

where ~ and u denote, respectively, the damping ratio and natural frequency of the inner
robot system (arm-plus-controller), a = 2@ and b = w’. During collision avoidance, the
outer force control loop perturbs the Cartesian setpoint for the inner position control loop.
In the proposed collision avoidance scheme, the outer loop employs the PI controller

K(s) = kp + $ (15)

in cascade with a nonlinear gain k, where kp and ki are the constant Positive  Proportional
and integral gains, respectively. .

To investigate the absolute stability of the closed-loop collision avoidance system, we
combine the linear components (14) and (15) as

b(kps + ki)W (S) = G(s)K(S) = s(s’ + as + b) (16)

which is a third-order transfer-function, and separate out the nonlinear element which is the
gain k. We can now apply the Popov Stability Criterion [11] to the system by examining
the Popov plot of VV(jw),  which is the plot of 7?eW(jw)  versus uZmW(jw), with u as a
parameter and 7?e and Zm refer to the real and imaginary parts, respectively. This plot
reveals the range of values that the nonlinear gain k can assume while retaining closed-loop
stability. The Popov Criterion states that:

“A sufficient condition for the closed-loop system to be absolutely stable for all nonlinear
gains in the range (O, k~a.)  is that the Popov plot of W(jw) lies entirely to the right of a
straight-line passing through the point – & + jo.”

In order to apply the Popov Criterion to the collision avoidance system, we need to
compute the crossing of the Popov plot of W (jw) with the real axis. In this case, from
equation (16), we obtain

– b
%3eW(jw)  = U’wz + (b – @’)’ [ti’kp - (di + bkp)] (17)

– b
wZmW(jw) = [w’(ak,  - ki) + bki] (18)

a’w’ + (b – w’)’

Two distinct cases are now possible depending on the relative values of ki and kP.

2.7.1 Case  O n e :  k i < akp

In this case, wZmW(jw)  is always negative for all w, that is, the Popov plot of W(jw)
remains entirely in the third and fourth quadrants and does not cross the real axis. This
implies that we can construct a straight-line passing through the origin such that the Popov
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plot is entirely to the right of this line. Therefore, according to the Popov Criterion, the
range of the allowable nonlinear gain k is (O, 00).

2.7.2 Case Two:  kl > akP

In this case, the Popov plot of VV(jU) crosses the real
found by solving uZrnW’(jw)  = O to yield

2 _ bki
(JO —

ki – akp

The value of W(jo) at the crossover is then obtained as

axis. The crossover frequency WO is

(19)

7?eW’(juo)  =
akP – ki

a
Therefore, the maximum allowable gain is

k
1 a

max =  –  T?eW(jwO)  =  k i  –  akP

(20)

(21)

We can now construct a straight-line pas~ng  through the point –& + jO such that the
Popov plot of W (jw) is entirely to the right of this line. Thus the range of the allowable
nonlinear gain k is (O, kmaZ).

Observe that the distinction between the above two cases is on the relative  values of
the proportional and integral gains kP and ~i in the PI controller. Notice that a reasonable

estimate of the attenuation factor a can readily be obtained experimentally from the open-
loop response of the Cartesian coordinate x to the step reference command Z.. Specifically,

10 to reach within the + l% tolerancethe step response has the settling time of ts = ~ = ~
band of the final value.

For the sake of illustration, computer simulations of a position-controlled arm with a
nonlinear PI collision avoidance controller are obtained. Given G(s) = ~z+~~,+25  and K(s) =
kP + ~, the Popov plots of W(s) = G(s)K(s) for the two values of kp = 2 and kp = O are
shown in Figures 9a–9b. For kp = 2, it is seen from Figure 9a that the Popov plot of W(jw)
does not cross the real axis as expected; hence the allowable range of the nonlinear gain k
is (0, cm). In contrast, when k. is reduced to zero, Figure 9b reveals that the POPOV plot.,, .
of W ( ju) crosses the real axis at –0.2, hence the allowable range of k is
(o, 5). We conclude that reducing kP has a destabilizing effect and decreases
allowable nonlinear gain k to maintain closed-loop stability.

3 Model-Based Obstacle Detection

now reduced to
the range of the

Obstacle detection can either be sensor-based, utilizing proximity sensors or machine vision
to identify obstacles, or model-based, utilizing geometric computations on a database that
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.

includes locations and geometries for manipulator arms and all potential obstacles. Model-
based detection has usually been used off-line as a component of path planning and simulation
systems and, as such, has not had the requirement for real-time performance. These detection
methods are capable of modeling complex manipulators and obstacles and can exhaustively
search for nearest obstacles (see, e.g., 12-13). Oftentimes, designs for real-time collision avoid-
ance have used sensor-based obstacle detection (see, e.g., 6, 14-15), but robotic manipulators
planned for space operations are not equipped with sensors capable of detecting obstacles in
real time. Usage of on-line detection data, however, will be similar to usage of real-time sen-
sor data; the model-based detection software may be considered to be a soflware sensor suite,
as opposed to hardware sensors, instrumenting the entire workspace and manipulators. The
goal of our obstacle detection effort, therefore, is to provide a model-based obstacle detection
capability which can detect nearest obstacles in real time. This has necessitated a minimalist
approach, with simple object models and distance computation algorithms, together with
some database sophistication to eliminate unnecessary computations.

For the sake of illustration and ease of presentation, we shall consider the NASA-Ranger
Telerobotic  Flight Experiment to exemplify the approach. Figure 10 shows  the major com-
ponents of the Ranger flight vehicle, consisting of a propulsion module with an octagonal
cross-section, two essentially planar solar arrays, a tapered electronics module with a square
cross-section, and a ‘cubicle manipulator module. Four robotic manipulators will be attached
to the manipulator module: two 7-DOF  dexterous manipulators, attached to the left and
right sides of the module; a camera manipulator attached to the top of the module; and a
grapple manipulator attached to the bottom. Figure lb shows the top view of the current
design of the Ranger dexterous manipulators that are mounted on the manipulator module.

In order to detect impending collisions, the fundamental requirement is to find the shortest
distance between all parts of the active manipulator and all potential obstacles, including
other manipulators (which may have moved since the previous distance computation) and
other components of the Ranger flight vehicle. All the components represented in Figures lb
and 10 can be modeled rather simply with cylindrical’ or polyhedral shapes. Furthermore, the
Ranger vehicle and manipulators need not be modeled with high fidelity, but computational
speed is critical because obstacle detection must be done at a high rate on-board the Ranger to
meet safety requirements. In order to meet the real-time Ranger performance requirements,
we have developed an approach which emphasizes simple object models, direct geometric
computation of distances, and avoidance of any unnecessary distance computations.

The collision detection software assumes that only one manipulator is moved at a time.
For each manipulator link that has moved, the shortest distance from the link to all objects
in its obstacle Jist (see description below) is measured. The collision detection function
returns the nearest object, its distance, and the link and collision object nearest points for
three categories: manipulator-to-manipulator, manipulator-to-vehicle, and manipulator-to-
bounding box. The bounding box is defined to be a hollow
the arm and centered on the Ranger manipulator module.
in x, y, and z directions are specified by the user. When a
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of the bounding box, an obstacle is detected.
The collision detection database (CDDB)  contains geometrical data, about the Ranger

flight vehicle and its manipulators for use by the collision detection software. The potential
obstacles in the CDDB are faces, edges and manipulator links. The CDDB identifies rela-
tionships between objects and contains lists of point locations, which may be either link or
edge end-points, as well as a list of pointers to potential obstacles for each link (the obstacle
M). The obstacle list3 typically has a relatively small number of entries, because most of
the objects in the CDDB are not within the reachable space of the link and are thus not
candidates for collision. By only checking the cases described above, and by only checking
feasible obstacles, collision detection computation is minimized.

All coordinates in the CDDB are expressed in the fixed manipulator reference ~rame,
a right-handed frame-of-reference whose origin is at the center of the manipulator module.
For each link of each arm, the CDDB contains the proximal and distal end-points of a line
segment through the axis of the link, and the radius for the link. Because there are only
5 link end-points per dexterous arm, a list of link end-point locations is maintained. These
locations are updated due to changes in joint angles, using forward kinematics computations.

For the vehicle, the CDDB contains a list of vehicle vertex points, whose coordinate values
are constant in the manipulator reference frame. Each edge contains pointers to two of the
vertex points. Each face contains pointers to vertex points surrounding the face in a counter-
clockwise fashion. These data structures also contain additional, redundant data computed
at initialization time to make distance computations fast.

For link-to-link distances, the shortest distance between the link axis line segments is
computed and the radii of both links are subtracted from this distance in order to get the
shortest distance between link surfaces. The geometric link surface that this computation
models is a cylinder of uniform radius with hemispherical end-caps of the same radius.

For link-to-edge distances, the shortest distance between the link axis line segment and the
edge line segment is computed and the link radius is subtracted in order to get the shortest
link-to-edge distance. The nearest points are the points on the link axis line segment and the
edge line segment that are closest to each other.

For link-to-face distances, the distance between the distal end-point of the link and the
plane of the face is computed, as well as the projection of the end-point in the plane. If
the projection of the distal end-point is not within the face, then this end-point-to-face
computation is discarded. Otherwise, the projection point is the face nearest point, the link
distal end-point is the link nearest point, and the link-to-face distance is the distance between
the nearest points less the radius of the link.

For link-to-bounding box distances, the distance between both end-points of each link
and the maximum and minimum values in each of the three reference frame axis directions

3The obstacle list structure is designed to allow dynamic addition and deletion of pointers to objects as
well as dynamic reordering of each list to reflect priority based on changing obstacle distances. In the current
implementation, the obstacle lists are static and are manually constructed based on simple inspection of the
Ranger geometry.
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is computed with a simple subtraction per end-point to bounding box limit pair. The least
of these distances is the minimum bounding box distance. The link nearest point is simply
the end-point used for the minimum distance, and the bounding box nearest point has the
same coordinate value as the bounding box limit in the axis corresponding to the bounding
box limit (e.g. if the closest limit is in the +x direction, the x coordinate will have the +x
limit value) and the same values as the link nearest point for the other two coordinates.

3.1 Line Segment to Line Segment Distance Computation

In order to determine the shortest distance between two arm links or between an arm link
and the edge of a polygonal face, it is necessary to compute the shortest distance between
one line segment (the arm link axis) and another line segment (another axis or the edge) in
the three-dimensional space. Figure 11 illustrates the problem. Line segment 1 is defined by
end-points P 1 and P ~, where:

(xl, Yl, a)

(4, Y;,4)
length of line segment 1 = lP~ – P ~ [

direction cosines of line 1 = (al, bl, cl)

and the coordinates are in the fixed manipulator frame-of-reference. The parametric equation
for the infinite line through line segment 1 is:

x =Pl+tl Al (22)

where the 3x1 vector X represents the coordinates of any point along the line and tl is a
scalar parameter. Line segment 2 has parameters and an equation analogous to that for line
segment 1; namely

x= P2+t2A2 (23)

We now wish to find the shortest distance dm between line 1 and line 2. We also want to find
the points M 1 on line 1 and M z on line 2 corresponding to this shortest distance.

Because the vector (M 1 – M z) must be perpendicular to both Al and A2:

(M2-M,) “Al=o

(M2-M,) .~2 =()

Thus
M2– M1=~12+t2A2–tl  A1

(24)

(25)

(26)
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where ~ 12- P z – P 1. Substituting this result into equations (24) and (25) and solving for
tl and t2 yields:

t~ = a+tzb (27)

tz =
a h — c
l–bz (28)

assuming b # +1, where a s 512 “ Al, b s Al . A2, and c - ~12 “ A2. The shortest distance
between the lines, d~, is simply the distance between the points M 1 and M2 corresponding to
the parameters tl and t2 given by equations (27) and (28). This algorithm will give correct
results for all non-parallel lines, including intersecting lines. If b = +1, then the lines are
parallel or colinear. This special case is handled in a similar fashion with straightforward
geometric computations [16].

Whether or not the line segments are parallel, the nearest points and shortest distances
for infinite lines may not correspond to the correct results for finite-length line segments. In
order to find the correct nearest points and shortest distances for non-parallel line segments,
the infinite-line nearest points are first tested to find out whether or not they are both within
their respective line segments – if so, the infinite-line results are correct. If only one of the
infinite-line nearest points is within its line segment, then the corrected nearest point on the
second line segment will be the end-point which is nearest to the infinite-line nearest point
on the first line segment. Then the corrected nearest point on the first line segment will
be the point on the first line segment which is closest to the corrected nearest point on the
second line segment. If neither of the infinite-line nearest points is within its line segment,
then a two-stage correction is necessary. In the first stage, each line segment nearest point
is taken to be the end-point which is closest to the infinite-line nearest point for that line
segment. One of these first stage nearest points is guaranteed to be the correct nearest point,
but the other is not. In the second stage correction, for each first stage nearest point, the
point-to-line-segment distance and nearest point on the opposing line segment are calculated.
Then the pair of nearest points with the smaller distance is selected as the final, correct set.

3.2 Point to Polygonal Face Distance Computation

This section presents the mathematical details of the algorithm used for computing the short-
est distance between a point and a polygonal face in the three-dimensional space. The algo-
rithm presented here is valid under the following two assumptions: (i) all faces are planar,
convex polygons, and (ii) all objects are convex polyhedra, i.e. with no concave angles be-
tween faces.

Given a sequence of vertex locations ordered in a counter-clockwise direction around a
face and an arbitrary point in space, we wish to find the projection of the point into the
plane of the face, determine whether or not the projection of the point lies within the face,
and find the distance from the point to the plane of the face.
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Figures 12a-12b  illustrate the problem. A face is represented by a sequence of vertex
points ordered in a counter-clockwise direction around the face relative.to  a point of view
which is outside of the object of which the face is a part. Point P is an arbitrary point (for
Ranger, the distal end-point of a manipulator link) which may be near to collision with the
face. We need to determine whether or not Q, the projection of P, falls within the face, since
P is not considered a collision hazard if it does not. If Q does fall within the face, we also
need the location of Q and the distance from P to the face.

The set of unit direction vectors, ~i, as shown in Figure 12a, is computed from the
vertex locations, and the face normal ii is computed as the average of all vertex face normals,
iii = & ~ A(a+l)  mod n o The face position vector @f is computed as the average of the
vertex locations. The plane of the face is then defined by the face normal and the face position
vector.

The distance dOf from the origin of the coordinate frame to the face plane is the dot-
product of the face plane perpendicular ii with the face position vector @’f (see Figure 12b):

doj=ii”jif (29)

The shortest distance d j from the plane to an arbitrary point P is the same as the distance
between the plane and a parallel plane through the point P. Therefore, the shortest distance
is given by

dj=ii.  flP-doj (30)

Since the perpendicular to the face plane is computed from edge direction vectors that are
directed clockwise around the face as viewed from outside of the solid, the perpendicular is
directed outward from the face. Then the signed value dj computed for the distance between
the point P and the face plane is greater than zero for a point outside of the solid (“above”
the face plane) and less than zero for a point that may be inside the solid.

The intersection point Q of a perpendicular from an arbitrary point P to the plane is the
location vector of the point less the perpendicular unit vector ii times the shortest distance
to the plane:

Q=$q=3’p-djti (31)

Finally, we need to find out whether or not the point Q lies within the face: Remember
that Aa is the direction vector from vertex z to vertex z + 1 of the face. If B ~ is a vector
from vertex i to Q, then the intersection point is interior to the face if and only if

for i = O, . . ,(?2- 1).

3.3 Computation Times

(32)

Line segment-to-line segment distance computation time, averaged over hundreds of different
line segments in different configurations, is measured to be about 16 psec on a MIPS R4600PC
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processor running at 100 MHz. Point-to-face distance computation time is even faster, but
has not been measured.

Total obstacle detection computation time, including computation of distances between
every link of the active arm and every obstacle in the link’s obstacle list, is measured to be
about 1.23 msec on the same MIPS processor. The Ranger flight computer is expected to
be a MIPS R4600 processor, but running at a slower clock rate, resulting in an estimated
computation time for obstacle detection of about 2.5 msec, which is well within the allowable
range for real-time arm control computations.

4 Ranger Simulation Results
The NASA-Ranger Telerobotic  Flight Experiment[17-18], led by the University of Ma~yland,
is aimed at the development and demonstration of robotics technologies for executing ma-
nipulation tasks in space. Ranger incorporates two 7-DOF  dexterous manipulation arms
mounted on a free-flying base, in addition to grapple and camera arms. The two dexterous
arms will be used, both individually and cooperatively, to perform a variety of manipulation
experiments and servicing operations is space, as shown in Figure 13. The Ranger dexterous
arms will be controlled using the configuration control approach in which the arm angle is
controlled in addition to end-effecter position and orientation.

The software packages for obstacle detection and collision avoidance are implemented in C
on an SGI Indy workstation under IRIX, but are designed to be portable for integration into
the Ranger flight software running on a MIPS R4600 processor under VxWorks. A graphical
user interface (GUI) program is developed to drive a 3-D graphical simulation of the Ranger
provided by the University of Maryland. The GUI is implemented in an object-oriented
interpretive language called Python [19-20], controlling widgets provided by Tk [21].

Figure 14 is a screen snapshot of the GUI, showing the Ranger 3-D graphics animation in
the upper left, the main control panel along the bottom of the screen, the test and viewpoint
control panel just above the main control panel, and the arm control panel in the upper
right. The 3-D graphics displays the Ranger Neutral Buoyancy Vehicle (NBV) and the two
dexterous arms. The nearest obstacle to the currently active arm is identified by a colored
line connecting the obstacle and the arm link that is closest to it. If the obstacle is within
the stand-off distance specified by the user, the nearest arm link changes color to red and
the connecting line changes from yellow to red. When collision avoidance is not active,
commanding an arm into a collision with an object will result in the arm moving inside the
obstacle. When collision avoidance is active, the arm will move as commanded until it hits
the invisible safety zone of the object, and will then slide along the safety zone boundary
until it is as close as possible to the target state.

The GUI provides the main control panel for operation of the Ranger graphical simulation
environment. The left-most column of the main control panel has buttons to select joint or
Cartesian arm control, to turn obstacle detection and collision avoidance on or off, to bring
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up a button panel for selecting test cases and viewpoints, and to terminate execution. The
second column has buttons which are used to select the active arm for control. The third
column displays obstacle detection data, including the arm link and obstacle nearest points
and the distance between them, and allows specification of the detection threshold.4 The
background of the distance panel is green for no obstacle within the detection threshold
distance, yellow for an obstacle within the distance, and red if the arm has collided with the
obstacle. The fourth column provides specification of the bounding box limits. The GUI
panel in the lower right corner displays current avoidance data. The top-most label widget
simply indicates whether or not avoidance perturbations are currently required. The middle
widget displays the reference and perturbed Cartesian coordinates and arm angle (aka SEW
roil angle). The slider along the bottom provides user setting of the stand-off distance.

The arm motion control panel is in the upper right of the screen image. In Cartesian
mode (as shown in Figure 14), it provides operator control of the position and orientation
of the end-effecter of the currently active arm, as well as the arm angle. In joint mode, the
desired target values of the seven joint angles are specified.

The Test Panel, immediately above the main control panel, is comprised of buttons that
allow the user to select from ten vista points for viewing the simulation, as well as to set up
and execute any of ten “canned” test and demonstration cases. Each Setup button puts the
dexterous arms into the starting pose for one of the ten test and demonstration cases, selects
the active arm for that case, brings up the arm control panel and turns obstacle detection on
with an appropriate detection threshold. Each Test or Demo button commands the active
arm to execute a trapezoidal trajectory in one or more of the six end-effecter coordinates or
the arm angle. The same tests may be executed with or without collision avoidance turned
on, to demonstrate the behavior of the active arm with aqd without this capability.

Several computer simulation tests are conducted on collision avoidance of the Ranger
dexterous arms, and a typical set of results are presented here. The obstacles used in these
tests are bounding box surfaces. When a manipulator approaches any side of the bounding
box, a virtual wall is detected as an obstacle.

Two simulation case studies are now presented:

4 . 1

Figure

Simulation 1: Hand Perturbations

15a shows the results of a simulation run using the Ranger test program and the col-
lision avoidance software to demonstrate hand position perturbation for collision avoidance.
For this run, the x component of the end-effecter position is commanded toward a bounding
box surface at x = 107 cm. The safety zone boundary, taking into account the radius of the
link, is at x = 99.65 cm, and the rejerence trajectory is the trajectory which would have
been followed if collision avoidance were not active. As shown in the Figure, the perturbed
trajectory enters the safety zone by less than 0.2 cm before settling down to a safety zone

4 This is a user-set threshold within which impending collisions are reported.
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intrusion of less than 0.1 cm. This is in contrast
zone when the collision avoidance is deactivated.

Figure 15b shows the perturbations used to

to an intrusion of 3.15 cm into the safety

modify the trajectory in Figure 15a. As
shown, the spring perturbation continues to increase over time, while the damper pertur-
bation decreases toward zero. Because the intrusion is always less than the parameter dk,
the nonlinear gain k reduces the effect of the spring perturbation. The net result is a total
perturbation which approaches the value corresponding to the maximum move allowed per
iteration, or 0.04 cm in this case. A simulation run demonstrating hand orientation pertur-
bation for collision avoidance is shown in Figure 15c. The perturbation profile is similar to
that shown in Figure 15b.

4.2 Simulation 2: Arm Posture Perturbation

Figure 16 shows the results of a simulation run to demonstrate arm angle perturbation for
collision avoidance. The corresponding perturbation follows a similar pattern to that shown
in Figure 15b. The maximum intrusion into the safety zone is approximately 0.28 cm. The
safety zone is such that # is limited to 101.6°. The reference trajectory is the trajectory
that ~ would have followed had avoidance been turned off. When the reference trajectory
~r moves out of the safety zone, the perturbed trajectory again coincides with the reference
trajectory. Generally, the avoidance results for this run are very similar to the end-effecter
test run results discussed before.

Perturbation computation times per iteration, not including the time required for obstacle
detection or forward and inverse kinematics computations, are measured to be less than 0.2
msec on a MIPS R4600PC processor running at 100 MHz. Total computation time, including
obstacle detection and forward and inverse kinematics computations, are measui-ed to be
about 2.5 msec. The Ranger flight computer is expected to be a MIPS R4600 processor,
which should have a similar performance for these computations.

5 RRC Experimental Results
In this section, we present a set of laboratory experiments conducted at JPL on real-time
collision avoidance of an RRC arm.

The experimental setup[22] consists of two RRC model K1207  7-DOF arms and control
units, a VME chassis, two hand controllers, a SUN Ultra 1 workstation, and a one-third
scale partial mockup of the truss structure of the International Space Station, see Figure 17.
The VME chassis serves as the real-time controller for the arm under study, and uses three
Motorola MC68040 processors along with shared memory card and various data acquisition
and communication cards. The VME-based real-time controller interfaces directly with the
Multibus-based  arm control unit supplied by RRC. This interface is through a two-card
VME-to-Multibus adaptor set from the BIT3 Corporation. This allows a high speed bi-
directional shared memory  interface between the real-time controller and the arm control
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unit. The Servo-Level Interface software supplied by RRC enables low-level communication
between the VME controller and the arm servo control loops at the rate of 400 Hz. The
VME controller is also linked via socket communication to the SUN workstation, where the
user interface software resides.

The armiscontrolled  bya configuration controller [22] which runson aCPU with the
computational time of about 1 msec. This controller ensures that the six end-effecter position
and orientation coordinates, as well as the arm angle, track user-specified trajectories. The
user commands seven Cartesian trajectories for the arm task coordinates using either the
trajectory generation software or the hand controllers. The configuration controller causes
the arm to execute the commanded motion for the end-effecter and the elbow in the absence of
workspace obstacles, During arm motion, the obstacle detection software running on another
CPU in the VME chassis continuously computes the distances between the arm links and
the workspace obstacles. The collision avoidance strategy described in Section 2 and shown
in Figure 7 is implemented in the VME controller so that the arm coordinates are perturbed
from their commanded trajectories as soon as an impending collision is detected.

Six experimental case studies on real-time collision avoidance are now described. In all
experiments, lci = 0.2, kP = 0.2, and the units of length and angle are meters and radians,
respectively. The numerical values of k i and kP are found empirically after a few trial-and-
error runs.

5.1 Experiment 1: Position perturbation
The goal of this experiment is to demonstrate perturbation of the end-effecter position in
order to avoid an impending collision. A rectangular “window” representing an opening
in the Space Station truss structure is placed in the arm workspace parallel to the world
frame y-z plane, and the four sides of the opening are defined as obstacles in the collision
detection database. The end-effecter of the RRC arm is commanded to move to the center
of the opening initially and then execute a diamond-shaped path inside the opening. Figure
18 (dashed line) shows the Cartesian path traversed by the end-effecter when the obstacle
avoidance capability is disabled. The path is designed so that the end-effecter is moved close
to the four sides of the opening with a clearance of 1 to 2 cm and then returns to the center.
The experiment is then repeated with the collision avoidance enabled. The end-effecter is
commanded to traverse the same path as before. However, when the end-effecter is now
closer to a side than the user-specified stand-off distance d~ = 10 cm, the collision avoidance
software inhibits motion toward the side. The path traversed by the end-effecter in this case
is shown by the solid line in Figure 18. Observe that while the end-effecter motion in the z (or
y) direction is inhibited to avoid collision, the commanded motion in the remaining direction
(y or z) is faithfully executed. Notice that collision avoidance is accomplished by truncating
the peaks of the diamond automatically to maintain the specified minimum distance to the
sides, thus turning the quadrilateral diamond into an octagon.
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5.2 Experiment

In this experiment, we
collision. A large box is

2: Orientation perturbation

demonstrate perturbation of the end-effecter orientation to avoid
attached tothetruss structure mockup in the laboratory. The end-

effector is initially positioned somewhat above the box, with the forearm pointing diagonally
upward. The end-effecter is then commanded to traverse a trapezoidal path that will move
it diagonally toward the top of the box, then parallel to the edge, and finally diagonally away
from the box. Figure 19 shows the experimental results obtained in this case. With collision
avoidance disabled, the wrist comes very close to the edge of the box. When the collision
avoidance is enabled, the wrist will automatically rotate away from the edge of the box in
order to maintain the specified clearance. This behavior is shown in Figure 19, indicating
a rotation about the world frame x-axis, where the commanded rotation about the x-axis is
0.6 radians.

5.3 Experiment 3: Arm angle perturbation

The purpose of this experiment is to demonstrate perturbation of the arm posture, i.e. change
in the arm angle, in order to avoid an impending collision. The second RRC arm is positioned
in the upright configuration to pose as a vertical obstacle during the first arm motion, and
the data representing the second arm configuration is inputted to the obstacle detection
software. The first arm is then commanded to execute a trajectory that brings its elbow very
close to the second arm, and the arm motion is then reversed. The dashed line in Figure
20 shows the constant commanded value of 0.493 radians for the arm angle. With collision
avoidance disabled, the constant commanded arm angle is maintained and the elbow almost
touches the second arm. The collision avoidance is then enabled and the same arm motion
is commanded. The experimental results are depicted by the solid line in Figure 20. The
results clearly demonstrate that the elbow now rotates away from the second arm in order to
maintain a clearance of dr = 20 cm specified by the user.

5.4 Experiment 4: Arm-to-base collision avoidance

The goal of this experiment is to demonstrate arm-to-base collision avoidance. The second
RRC arm is configured to a specific set of joint angles and base position, and this information
is inputted to the collision detection database for the first arm. The end-effecter of the first
arm is commanded to move close to the second arm base pedestal. Figure 21 (dashed line)
depicts the top-down view (x-y plane projection) of the end-effecter motion with the collision
avoidance disabled. It is observed that the end-effecter comes to within about 2 cm of
the base pedestal. With the collision avoidance enabled, the end-effecter is commanded to
execute the same motion, and the results are shown by a solid line in Figure 21. Observe
that the end-effecter now follows a smooth trajectory to avoid the second arm base pedestal
and maintain the stand-off distance of d, = 10 cm to the base.
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5.5 Experiment

In this experiment, we

5: Self-arm collision avoidance

demonstrate self-collision avoidance for the RRC arm. The arm is
positioned initially “curled in” on itself, with the end-effecter and wrist pointed in opposite
directions and the end-effecter pointed toward the upper-arm link away from the truss struc-
ture. The end-effecter is commanded to move toward the truss. The top-down view (x-y
projection) of the path traversed by the end-effecter is shown by a dashed line in Figure 22.
With collision avoidance disabled, the end-effecter comes very close to the upper-arm. The
collision avoidance is now enabled and the same end-effecter motion is commanded. The
experimental results are shown by a solid line in Figure 22. The end-effecter deviates from
the nominal path and makes a “detour” to stay clear of the upper-arm and maintain the
stand-off distance of dr = 10 cm.

5 . 6  E x p e r i m e n t  6 :  Teleoperation

The goal of this experiment is to demonstrate
arm is under teleoperation. In this experiment,

the collision avoidance capability when the
commands for the end-effecter position and

orientation and the arm angle are issued by the operator acting on two hand controllers.
This is in contrast to previous experiments where the commanded motions are produced by
the trajectory generation software. Experiment 1 is repeated with the user teleoperating the
end-effecter within the fake truss opening using the hand controller. While the end-effecter
is away from the sides of the opening, the teleoperated commands are executed. As soon as
the end-effecter is commanded to move close to a side, a counter-command is generated by
the collision avoidance software that nullifies the teleoperated command and inhibits motion
toward the side. Thus erroneous teleoperated commands that would otherwise cause collision
are corrected on-line and in real time. This is an important augmentation to teleoperation,
particularly for operation in partially or completely occluded regions of the workspace.

6 Conclusions
A new approach for real-time collision avoidance of dexterous 7-DOF  arms is developed and
demonstrated in this paper. This approach is based on representing the proximity of the arm
to workspace obstacles by virtual forces, and servoing these forces to zero by employing an
outer feedback loop around the inner arm position control system. .

The approach presented in this paper is equally applicable to both model-based and
sensor-based collision avoidance. For the sensor-based case, the on-line distance computations
are replaced by the readings provided by the proximity sensors mounted on the arm[6].
Furthermore, the proposed approach applies to both stationary and moving obstacles (as in
Experiment 5), since the distance computations (or measurements) are updated continuously
in real time, Finally, the approach is pragmatic because: it is simple and computationally
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very fast, it requires minimal modification to the arm positioning system, and it applies to
whale-arm, not just the end-effecter, collision avoidance.
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